Direct interaction approximation for non-Markovianized stochastic models in the turbulence problem
نویسندگان
چکیده
منابع مشابه
Lagrangian Markovianized Field Approximation for turbulence
In a previous communication (W.J.T. Bos and J.-P. Bertoglio 2006, Phys. Fluids , 18, 031706), a self-consistent Markovian triadic closure was presented. The detailed derivation of this closure is given here, relating it to the Direct Interaction Approximation and Quasi-Normal types of closure. The time-scale needed to obtain a self-consistent closure for both the energy spectrum and the scalar ...
متن کاملUse of Stochastic Turbulence Models in Jet Acoustics
There are many approaches to determine the sound propagated from turbulent flows. In hybrid methods, the turbulent noise source field is computed or modeled separately from the far-field calculations. To have an initial and quick estimation of the sound propagation, less computationally intensive methods can be developed using stochastic models of the turbulent fluctuations. In this paper, ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn Inventory Routing Problem for Perishable Products with Stochastic Demands and Direct Deliveries
In any supply chain, distribution planning of products is of great importance to managers. With effective and flexible distribution planning, mangers can increase the efficiency of time, place, and delivery utility of whole supply chain. In this paper, inventory routing problem (IRP) is applied to distribution planning of perishable products in a supply chain. The studied supply chain is compos...
متن کاملStochastic Approximation for Estimation of Biological Models
Stochastic approximation for estimation (SAE) is a class of optimisation algorithms, which computes, to an approximation, the gradient and/or the Hessian of the objective function by varying all the elements of the parameter vector simultaneously and, therefore, requires only a few objective function evaluations to obtain first or second-order information. Consequently, these algorithms are par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos: An Interdisciplinary Journal of Nonlinear Science
سال: 2019
ISSN: 1054-1500,1089-7682
DOI: 10.1063/1.5087410